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The quasistationary approximation is used to describe fluid motion with low accelera- 
tions, and consists of discarding inertial forces in the Navier-Stokes equations. This situ- 
ation is clearly realized in thin fluid layers, capillaries, and small-size drops, when sur- 
face tension forces dominate over mass-weight forces included in the inertial terms. 

The problem considered here is that of equilibrium stability of a fluid layer at the 
surface of a circular cylinder with an isothermal free boundary. Based on representing so- 
lutions of the Stokes system in terms of the bianalytic stress-current function, the ellip- 
tic part of the problem is reduced to a system of one-dimensional Fredholm integral equations 
of the second kind. Following its solution, the nonstationary kinematic condition leads to 
a parabolic pseudo-differential equation in the perturbation parametrization of the free 
boundary. The spectrum of the linearized "normal velocity" is calculated, and a stability 
condition is obtained for the cylindrical shape of the free boundary with respect to small 
planar initial perturbations. 

i. Statement of the Problem. Let a viscous, incompressible fluid undergo quasista- 
tionary plane-parallel motion under the action of thermocapillary forces. We denote by fl = 
fl(t) a doubly-connected region, filled by a fluid at the moment of time t, with a fixed cy- 
lindrical wall E and a free boundary F = F(t). The mathematical formulation of the problem 
consists of finding the flow region fl, the velocity v = v x + iVy, and the pressure p as func" 
tions of the point z = x + iy e fl and of time t, satisfying the equations 

VP = ~tAv, div v = 0 inQ; 

v - -  0 o n  E ;  

p ( n )  = o .  r; 

Vn = v . n o n r ;  

F ~- F o for t . =  O. 

(i.i) 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

Here P(n) = pn - D(n-Vv + 7v.n) is the pressure vector (impulse flow) along the internal 
normal n = idz/ds; s is the arc length of the boundary ~, D is the dynamic viscosity coeffi- 
cient, o is the varying surface tension coefficient, and V n is the displacement velocity of 
F along the normal n. 

By the well-known Frenet equation d2z/ds = = kn (k is the curvature of F) the dynamic 
condition (1.3) acquires the standard form (in equilibrium we have the Laplace equation p = 
ok). In the general case a tangential component of the pressure vector is generated on F, 
equal to do/ds, and leading to fluid convection. In the problem of thermocapillary convec- 
tion the dependence of o on temperature e is assumed known: o = o(e). For simplicity it is 
assumed that 8 satisfies the quasistationary problem 

A0 = 0 i n Q ,  0 = 0 0 on ~ ,  dO/dn = ~(0 - -  0=) on F ( 1 . 6 )  

(8 0 i s  t h e  t e m p e r a t u r e  o f  t h e  w a l l  E, 0~ i s  t h e  t e m p e r a t u r e  o f  t h e  a d j a c e n t  g a s ,  and  $ i s  
the interphase heat exchange coefficient). 

Below we consider the specific problem in which the wall E = {Izl = R0} has a constant 
temperature 8o, not equal to 8~. There exists then an equilibrium state of the fluid layer 
with an isothermal free boundary F = {Izl = R} (for definiteness R > R0). In this case the 
solution of (1.6) is 

O(z) = 0 o -[- (Ooo - -  Oo)B ln (b I /Bo) / ( i  + aB),  
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where a = in (R/R 0) and B = SR is the Biot number. From the free boundary temperature 0, = 
(80 + aBO~)/(l + aB) one determines the thermocapillary number 

C = B (0 o --oo~) c~' (0,) _-- B dO (~' (0) 
(1 + aB) o- (i3,) - -  d-n ~-~'(0)" on r ,  

whose sign also determines the stability. More precisely, it will be shown that the equi- 
librium state described is stable with respect to a small initial perturbation F 0 if C > 0, 
and unstable when the opposite inequality C < 0 is satisfied. For purely free boundaries 
o'(0) < 0, therefore the instability starts at 00 > 0~.  

The following scheme is suggested for solving the problem (1.1)-(1.6). We fix the 
curve F at moment of time t, and solve the auxiliary problem (1.1)-(1.3), (1.6) in the known 
region ft. Since this problem is uniquely solvable, one determines the "normal velocity" 
operator N(F), comparing the curve F with the normal velocity component v-n on F [i]. Equa- 
tions (1.4)-(1.5) are now written down formally in the form of the Cauchy problem for the 
curve F (SF/St = Vn): 

orlot = N(r),  r (o) - -  to. ( 1 . 7 )  

Obviously, all stability information within the linear approximation of fluid equilibrium 
is included in the structure of the spectrum of the operator N(F) linearized at rest. 

2. The Complex Stress-Current Function. To solve the auxiliary problem it is conven- 
ient to transform to complex variables. We introduce the stream function ~ by the equali- 
ties v x = -8~/8y, Vy = 8~/8x or v = ivy. From (i.i) follows the equation 52~ = 0, therefore, 
~_= Imw, where w = ~ + i~ is a bianalytic function: 82w/Bz 2 = 0 (28/3z = 8/~x - i8/3y, 28/ 
8z = 8/8x + i3/8y are the Cauchy-Riemann operators). In analogy with planar elasticity the- 
ory, the function ~ = Rew is called the stress function, while w is the stress-current func- 
tion. For nonvortical motion ~ transforms into the velocity potential: v = -V~. It is 
easily established that the stress function is determined from the stream function accurate- 
ly within an arbitrary term 

Co~ ~ + f )  + c~x + c~v + c~. ( 2 . 1 )  

Since the function Aw is analytic, by the Cauchy-Riemann conditions we have from the 
Stokes system (i.i) 

aT = - ~ ( A r  = - ~ ( A ~ ) .  

Due to the arbitrariness of the number co, it can be assumed in expression (2.1) that p = 
-~A~; therefore, 

�9 ~ dz i =--4~i +~-- =--4~-d-s p (~) = - ~ (a ,~)  t~ - 2~  (o~1o~) ,~ = - @~ ~ d~ ~ ~ [a-G~ ~ o~ d~j -~  �9 

Consequently, the Kolesov-Muskhelshvili representation is valid 

dz) . d 
P / ~  = - - 2 ~ s ( V ~ ) ,  v = / V ~ ,  p = - - ~ A ~ .  ( 2 . 2 )  

I n  t e r m s  o f  w = ~ + i ~ ,  and  w i t h  t h e  u s e  o f  ( 2 . 2 ) ,  t h e  b o u n d a r y  c o n d i t i o n s  ( 1 . 2 ) - ( 1 . 3 )  
are written in symmetric form 

~ = 0 ,  2pd~/dn = o(0) a t  F, ( 2 . 3 )  
~ O , d ~ n  ~ 0 a t  E .  

In integrating the dynamic condition (1.3) we used the arbitrariness of the numbers ci, c2, 
c 3 in (2.1). Following the solution of problem (1.6), (2.3) with a fixed curve F, the "nor- 
mal velocity" operator is calculated as N(F) = d~/ds. 

3. Mixed Problem for the Bianalytic Function. For the bianalytic function w = ~ + i~ 
in a doubly-connected region ~, restricted by the closed curves F and E, we consider the 
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following mixed problem of general form 

(p = f~ ,  d r p / d n  = dgt/ds on F, 

=/2,  d~/dn = dgJds on E 
( 3 . 1 )  

(f~, f~, dg~/ds, dg=/ds are given functions). 

The Hoersch representation w(z) = w0(z) + zw~(z) is valid, where w0(z) , w~(z) are ana- 
lytic functions, in terms of which problem (3.1) is written as follows: 

d-z) dug dg~ 
Re (w o + zuh) =/~, 2Im w l~ss ds ds on F, 

, ( ~ 7 )  d(p dg.~ 
Im ~w o + ziv 0 = / ~ ,  2Re 1~ 1 ~ ds Us on Y,. 

( 3 . 2 )  

In fact, due to the equality dz/dn = n = idz/ds, we obtain dw0/dn = idw0/ds , dw~/dn = idw~/ 
ds; therefore, dw/dn = idw/ds + 2nSw/Sz. 

We write down initially a solution of the mixed problem for the analytic function ~(~) 
in the canonical region 

G~ = {0 < Im~ < g}/2~Z 

(by definition, the functions analytic in the "ring" G~ are 2~-periodic and analytic func- 
tions in the strip {0 < ImT < ~}). More precisely, the problem Re~(1) = F~(X), Im~(l + 
i~) = F2(X) has a unique solution (~0 e G~) 

2 ~  2 ~  

r Cro) 2~--~ M (~ - -  "to) f ('r) d-r ---- ~ M (~ - -  %) F~ (~) & - -  
OGo~ 0 0 

oo 

' ~  e-h~ sin kr where F(X) = Fl(1), F(~ + i~) = iF2(1) , and M(z) = cot~--2 ~ chka 
h=l 

fine the operator 

S: {Re e(%), Im e(X + i=)} -- {Im e(X), --Be r + i=)} 

We similarly de- 

with the singular integral 

2~ 
1 

s <f 1%o> = ~ ~ s <%o - %). f (%) d~, f : { h ,  h } ,  
0 

- M~  (~) - -  M (~) ' ~ r ,  (~) = ~M (~ + ~ )  = ~h k----g" 
�9 " h- - - - - - -oo  

(3.3) 

Let the analytic 2z-periodic function z = z(~) satisfy the conformal mapping G~ on 

with norm z(i~) = R0eiB. It is well known that the conformal invariant ~ is uniquely deter- 
mined in the region ~ [2]. Following the variable replacement z = z(~), problem (3.2) ac- 
quires the form 

r ---- Be{wo(%) -4- z(%)wl(k)} =/I(;L),  ( 3 . 4 )  

�9 (~ + i~) - -  ~ra {Wo(X + i~) + z(~ + ~m'~(% § i . ) )  = h(X); 

2 R e ( ~ j - -  Iz'(X) l 2 ' ( 3 . 5 )  

t 

2 Im (~ + ie) t z' (~ + i~) 12 

( t h e  f u n c t i o n a l  n o t a t i o n a l  a r e  t h e  same a s  e a r l i e r ,  and  t h e  p r i m e  c o r r e s p o n d s  t o  d i f f e r e n -  
t i a t i o n  w i t h  r e s p e c t  t o  I ) .  
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We introduce the vector ?(/) = {~(k), -~(X + i~)} and obtain for it an integral equation. 
For this purpose, from (3.5) and for given right hand sides we represent w~(x) in terms of 
~(~ and substitute it into Eq. (3.4). From (3.4) we find w0(x), following which we calcu- 
late the vector ? in terms of w0, w~, obtaining 

y -- S(f) + T(g) + T(%,). ( 3 . 6 )  

2~ 

Here  T(VlX0)=  - - ~ S  T(Xo, X).dv(X); 
0 

( ReK(ho, ~) ImK(~o, )~ + ion) ) 
T (~o,~) = \ Im  K (k o + icz, ~) --Re K (~o + i~z, ~ + i(z) ; 

K(~~ +) a~l ~' (+) I ~ {[z (~0) - -  z([)] M ( ~  o - -  D - 
0 

[z (~o) --  z (~)1 M (~o --  ~)} M ([ --  ;) dz ([). 

In  c a l c u l a t i n g  t h e  o p e r a t o r  T i t  i s  n e c e s s a r y  t o  u se  t h e  i d e n t i t y  

1 (~o)=~ ~ M(x--Zo) Wl(T)d~, T o~OGa. Wl 
OG~ 

I t  can be shown t h a t  t h e  k e r n e l  dT(Xo, k)/dX0 has  a weak s i n g u l a r i t y  i f  r and E a re  
Lyapunov c u r v e s ,  i . e . ,  z ' ( x )  be longs  t o  t h e  Holder  c l a s s .  E q u a t i o n  ( 3 . 5 )  i s  a Fredholm i n t e -  
g r a l  equation of the second kind, therefore it is always solvable due to the uniqueness of 
the vanishing solution of the homogeneous auxiliary problem (1.1)-(1.3). On the function 
z = e Ix, satisfying the mapping G~ in the annulus {e -~ < Izl < i}, the kernel T(10, l) is 
calculated explicitly 

T (Eo, ~) = e_~ sh ~M,  (~o --  ~)- ( 3 . 7 )  

O b v i o u s l y ,  t h e  k e r n e l s  K and T do n o t  change when z (x )  i s  r e p l a c e d  by a z ( x )  + b. 

4. Parametrization of the Free Boundary. We transform problem (1.7) to an integrodif- 
ferential equation in some parametrization of the curve F. In our specific situation it is 
convenient to represent the mapping z(~) in terms of the real 2~-periodic function D(I) = 
in([z(X) I/R). For this it is necessary to solve the Schwartz problem 

whose solvability condition leads to an expression for the conformal invariant 

(4.1) 

o ~ = a + ~  
0 

(~) d~. (4.2) 

The function z(%) in N(X) is reconstructed from (4.1) by means of the Hilbert transformation 
H in the form 

z(k) = R exp {ih + q@) + ~H('qtk)}, 
+_. ( 4 . 3 )  oo 

% e-ha sin k% H(~oo l )~(~)dh,  H ( k ) = c t g ~ + 2  
0 I~=1 

The mapping constant is pure imaginary due to the normalization z(i~) = R0ei~ (the angle B 
is unimportant). 

Following simple calculations with the use of (4.3), Eq. (1.7) or 

hn~'azl~t} =~7' 
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in terms of ~ acquires the form 

( , . -~1 ,OH01) W (4.4) 
{l + . H  t ) ) ~ - - ~ 1  ~: .... R~e~, " 

We n o t e  t h a t  t h e  H i l b e r t  k e r n e l  H(~)  depends  on t i m e  t in  t e r m s  o f  t h e  number a ,  r e l a t e d  t o  
by Eq. ( 4 . 2 )  ( o b v i o u s l y ,  t h e  k e r n e l  8H/Sa i s  n o n s i n g u l a r ) .  The f u n c t i o n  ~ ( ~ )  i s  d e t e r m i n e d  

a t  e a c h  moment o f  t i m e  by t h e  c o n f o r m a l  mapp ing  z ( ~ )  as  t h e  f i r s t  componen t  o f  t h e  s o l u t i o n  
?(~) of Eq. (3.6). 

5. Linearization of the Problem. Using the conformal mapping z(~) and the kernel M(~), 
the mixed problem of Eq. (1.6) for the temperature can be reduced to a one-dimensional inte- 
gral equation. We restrict ourselves here to writing the expression for the linear part of 
the solution in the perturbation D(%) 

a(0)  = a (0.)  { l  - -  CA (~ l x)} for z =  z(~) .  (5.1) 
Here  the operator A is 

i.e., 

Ah = t 4r- th ka/k "Ao ---- t + a 
t -b B th katk. ' i -~- Ba' 

i t  a c t s  on t h e  f u n c t i o n  N(X) a c c o r d i n g  t o  t h e  f o l l o w i n g  e q u a t i o n :  

A ( ~ ]  ~) v ~  : e~,~ ~ e ~ .  = ~ .  ~,l~ , ~(~)=~ 
h h 

To linearize problem (3.6) it is convenient to supplement the stress function ~(z) by 
the function o(@,)(Izl 2 - R2)/(4~R) of shape (2.1), with �9 = �9 = 0 on the basis of the solu- 
tion D = 0, and accurately within quadratic terms we obtain the expressions 

2~f (~) = a (0,) R {~ (~), 0}, 

2~g' (%) = - -  ~ (0,) R {~ (~) + CA (~] ~), 0}. 

Using now (3.3), (3.7), (4.2), and (5.1), the linear problem in N(%) (3.6) is solved, and 
following substitution of the first component of Y (~) into the linearized equation (4.4), 
the following problem is generated 

OqlOt = - -  [o (0,)/(2~B)] L (~), 

where  L ( ~ )  i s  a p s e u d o d i f f e r e n t i a l  o p e r a t o r  w i t h  r e a l  a r g u m e n t  

( 5 . 2 )  

Lh = k th ka  1 'b (C'A h th a -- 1) k sh 2a/sh 2ka ( 5 . 3  ) 
t ~- (k sh a/ch ka) 3 

For asymptotic stability of the vanishing solution in the perturbation N at t = 0 it 
is necessary to satisfy the inequalities Lk > 0 for k ~ i, which is equivalent to the condi- 

tion C > 0. On the other hand, for C < 0 we clearly have L l < 0. Thus, the sign of the 
thermocapillary number completely determines the state stability. 

It is seen from (5.3) that ~k ~ Ikl for k + =, i.e., the pseudodifferential operator L 
is of first order. Consider the asymptotic symbol (5.3) for a + 0, restricting k to C = 
C0a (C O = const), corresponding to the long-wave approximation of a thin layer. In the given 
case the expansion 

Lh = {2( k2 - -  i)/3 + Co}k~a 3 + O(a 4) 

can be associated with the contracted fourth-order differential equation (5.2) 

an o (0,) a 3 ~ I (,, I }" 
o-7 + ~R i T  +Tl ) - -~-Co~l  = 0 .  

It finally coincides with the Reynolds equation, linearized in dimensionless variables, of 
lubrication theory applied to thermocapillary motion of a fluid layer of thickness h at the 

209 



wall E = {Izl = R0} [3] 

b7 +divz[ 3~ Vz Azh+ +~Vz(r,(h) =0. 

The dependence o,(h) = o((i - ~h)e0 + $h8=) is obtained here as a result of asymptotic inte- 
gration of the heat conduction equation for h/R 0 + 0. The linearization is carried out in 
the constant layer thickness h = R - R0. 

In conclusion we note that the critical thermocapillary numbers, making the operator 
Lk vanish, were obtained in [4]. The branching of stationary solutions of the complete equa- 
tions of thermocapillary convection was established in [5] near the critical Marangoni num- 
bers. These numbers were calculated in [6] for a nondeformed free boundary. 
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THEORETICAL AND EXPERIMENTAL STUDY OF CONVECTION IN A LIQUID LAYER 

WITH LOCAL HEATING 

V. A. Al'vares-Suares, Yu. S. Ryazantsev, 
and V. M. Shevtsova 

UDC 536.25 

The existence of shearing forces associated with surface tension at phase boundaries 
(liquid-liquid, liquid-~as) may have a significant effect on heat and mass transfer in a 
liquid. In the case where a temperature gradient is created in the volume of liquid being 
studied, surface thermocapillary forces - due to their low inertia - may lead to the devel- 
opment of fast-moving hydrodynamic flows [i, 2]. These effects become particularly impor- 
tant in space technology in connection with the study of the behavior of materials (melts) 
under low-gravity conditions, when the role of thermogravitational convection becomes negli- 
gibly small [3]. Possible applications here include crystal growth, welding, and the pro- 
duction of foamed materials in space. 

The phenomenon of thermocapillary convection (TCC) (Marangoni effect) makes some con- 
tribution to mass transfer in normal production processes as well. In the laser treatment 
of the surface of metals, TCC may play an important role in the alloying and nitriding of 
different grades of steel [4]. With allowance for the change in the form of the surface 
under the influence of TCC, possible uses of TCC include the production of diffraction 
gratings [5] and a new type of photographic process called thermoextensography [6]. This 
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